Firewall technology emerged in the late 1980s when the Internet was a fairly new technology in terms of its global use and connectivity. The predecessors to firewalls for network security were the routers used in the late 1980s to separate networks from one another. The view of the Internet as a relatively small community of compatible users who valued openness for sharing and collaboration was ended by a number of major internet security breaches, which occurred in the late 1980s:
- Clifford Stoll's discovery of German spies tampering with his system
- Bill Cheswick's "Evening with Berferd" 1992 in which he set up a simple electronic jail to observe an attacker
- In 1988 an employee at the NASA Ames Research Center in California sent a memo by email to his colleagues that read,
“ | We are currently under attack from an Internet VIRUS! It has hit Berkeley, UC San Diego, Lawrence Livermore, Stanford, and NASA Ames. | ” |
- The Morris Worm spread itself through multiple vulnerabilities in the machines of the time. Although it was not malicious in intent, the Morris Worm was the first large scale attack on Internet security; the online community was neither expecting an attack nor prepared to deal with one.
The first paper published on firewall technology was in 1988, when engineers from Digital Equipment Corporation (DEC) developed filter systems known as packet filter firewalls. This fairly basic system was the first generation of what would become a highly evolved and technical internet security feature. At AT&T Bell Labs, Bill Cheswick and Steve Bellovin were continuing their research in packet filtering and developed a working model for their own company based upon their original first generation architecture.
Packet filters act by inspecting the "packets" which represent the basic unit of data transfer between computers on the Internet. If a packet matches the packet filter's set of rules, the packet filter will drop (silently discard) the packet, or reject it (discard it, and send "error responses" to the source).
This type of packet filtering pays no attention to whether a packet is part of an existing stream of traffic (it stores no information on connection "state"). Instead, it filters each packet based only on information contained in the packet itself (most commonly using a combination of the packet's source and destination address, its protocol, and, for TCP and UDP traffic, the port number).
TCP and UDP protocols comprise most communication over the Internet, and because TCP and UDP traffic by convention uses well known ports for particular types of traffic, a "stateless" packet filter can distinguish between, and thus control, those types of traffic (such as web browsing, remote printing, email transmission, file transfer), unless the machines on each side of the packet filter are both using the same non-standard ports.
Main article: stateful firewall
From 1989-1990 three colleagues from AT&T Bell Laboratories, Dave Presetto, Janardan Sharma, and Kshitij Nigam developed the second generation of firewalls, calling them circuit level firewalls.
Second Generation firewalls in addition regard placement of each individual packet within the packet series. This technology is generally referred to as a stateful firewall as it maintains records of all connections passing through the firewall and is able to determine whether a packet is either the start of a new connection, a part of an existing connection, or is an invalid packet. Though there is still a set of static rules in such a firewall, the state of a connection can in itself be one of the criteria which trigger specific rules.
This type of firewall can help prevent attacks which exploit existing connections, or certain Denial-of-service attacks.
Main article: application layer firewall
Publications by Gene Spafford of Purdue University, Bill Cheswick at AT&T Laboratories, and Marcus Ranum described a third generation firewall known as an application layer firewall, also known as a proxy-based firewall. Marcus Ranum's work on the technology spearheaded the creation of the first commercial product. The product was released by DEC who named it the DEC SEAL product. DEC’s first major sale was on June 13, 1991 to a chemical company based on the East Coast of the USA.
The key benefit of application layer filtering is that it can "understand" certain applications and protocols (such as File Transfer Protocol, DNS, or web browsing), and it can detect whether an unwanted protocol is being sneaked through on a non-standard port or whether a protocol is being abused in a known harmful way.
In 1992, Bob Braden and Annette DeSchon at the University of Southern California (USC) were refining the concept of a firewall. The product known as "Visas" was the first system to have a visual integration interface with colours and icons, which could be easily implemented to and accessed on a computer operating system such as Microsoft's Windows or Apple's MacOS. In 1994 an Israeli company called Check Point Software Technologies built this into readily available software known as FireWall-1.
The existing deep packet inspection functionality of modern firewalls can be shared by Intrusion-prevention systems (IPS).
Currently, the Middlebox Communication Working Group of the Internet Engineering Task Force (IETF) is working on standardizing protocols for managing firewalls and other middleboxes.
There are several classifications of firewalls depending on where the communication is taking place, where the communication is intercepted and the state that is being traced.
Network layer firewalls, also called packet filters, operate at a relatively low level of the TCP/IP protocol stack, not allowing packets to pass through the firewall unless they match the established rule set. The firewall administrator may define the rules; or default rules may apply. The term "packet filter" originated in the context of BSD operating systems.
Network layer firewalls generally fall into two sub-categories, stateful and stateless. Stateful firewalls maintain context about active sessions, and use that "state information" to speed packet processing. Any existing network connection can be described by several properties, including source and destination IP address, UDP or TCP ports, and the current stage of the connection's lifetime (including session initiation, handshaking, data transfer, or completion connection). If a packet does not match an existing connection, it will be evaluated according to the ruleset for new connections. If a packet matches an existing connection based on comparison with the firewall's state table, it will be allowed to pass without further processing.
Stateless firewalls require less memory, and can be faster for simple filters that require less time to filter than to look up a session. They may also be necessary for filtering stateless network protocols that have no concept of a session. However, they cannot make more complex decisions based on what stage communications between hosts have reached.
Modern firewalls can filter traffic based on many packet attributes like source IP address, source port, destination IP address or port, destination service like WWW or FTP. They can filter based on protocols, TTL values, netblock of originator, domain name of the source, and many other attributes.
Commonly used packet filters on various versions of Unix are ipf (various), ipfw (FreeBSD/Mac OS X), pf (OpenBSD, and all other BSDs), iptables/ipchains (Linux).
Main article: Application layer firewall
Application-layer firewalls work on the application level of the TCP/IP stack (i.e., all browser traffic, or all telnet or ftp traffic), and may intercept all packets traveling to or from an application. They block other packets (usually dropping them without acknowledgement to the sender). In principle, application firewalls can prevent all unwanted outside traffic from reaching protected machines.
On inspecting all packets for improper content, firewalls can restrict or prevent outright the spread of networked computer worms and trojans. In practice, however, this becomes so complex and so difficult to attempt (given the variety of applications and the diversity of content each may allow in its packet traffic) that comprehensive firewall design does not generally attempt this approach.
The XML firewall exemplifies a more recent kind of application-layer firewall.
Main article: Proxy server
A proxy device (running either on dedicated hardware or as software on a general-purpose machine) may act as a firewall by responding to input packets (connection requests, for example) in the manner of an application, whilst blocking other packets.
Proxies make tampering with an internal system from the external network more difficult and misuse of one internal system would not necessarily cause a security breach exploitable from outside the firewall (as long as the application proxy remains intact and properly configured). Conversely, intruders may hijack a publicly-reachable system and use it as a proxy for their own purposes; the proxy then masquerades as that system to other internal machines. While use of internal address spaces enhances security, crackers may still employ methods such as IP spoofing to attempt to pass packets to a target network.
Main article: Network address translation
Firewalls often have network address translation (NAT) functionality, and the hosts protected behind a firewall commonly have addresses in the "private address range", as defined in RFC 1918
See: Comparison of firewalls
No comments:
Post a Comment